
TensorFuzz: Debugging
Neural Networks with

Coverage Guided Fuzzing
Augustus Odena, Catherine Olsson,
David G. Andersen, Ian Goodfellow

How Should We Test Neural Networks?

What are we testing for?

- No crashes
- No NaNs
- Same answer for mutated image if difference is small
- Same answer from quantized & non-quantized network
- Same answer from base and refactored network

Some related work on this: Pei et al, Sun et al, Ma et al, Tian et al, Wicker et al -
see paper for more details

Our idea: neural networks are programs, so let’s use an idea from testing
programs: coverage guided fuzzing.

Fuzzing Normal Programs

● 2 big fuzzers: AFL and libFuzzer

● Maintain a corpus of inputs, mutate elements in that corpus, and

put new mutations in the corpus if they ‘exercise’ new coverage

● What is coverage? Basic blocks hit, say.

● These are used *a lot* in the security community and have found

a lot of serious security flaws.

Neural
Network

Input

Correct

Erroneous

Crash

Fuzzing to Find Bugs in Deep Neural Networks

Input’

Mutation

Seed
Corpus

Input
Input

Which input to
mutate next?

Coverage-guided!
Run example through network: Did it explore new states?
Pick next examples to maximize exploration.

Fuzzing Challenges for DNNs:

- Mutation: How to change input to better find bugs?
- For crashes, anything goes.
- For errors, if we scramble an image, is it still a dog?
- We keep it simple: Gaussian noise, sometimes with constraints to ensure image remains in

domain, etc.

- Guidance: How do we define “coverage” for a DNN?

- Errors: What defines an error?

Defining Coverage: (Approx.) Nearest Neighbors
Code coverage doesn’t apply well to DNNs:

- All examples trigger identical code paths, only the data differs

Prior work used, e.g., “Neuron Coverage” (though not for fuzzing):

- Ensure each ReLU is explored in both 0 and > 0 states.
- Unfortunately, too easy to satisfy: Not enough exploration

Our contribution: Nearest neighbor algorithm on activations

- In practice, use activations of last layer before softmax, often a ~1024
dimension vector.

Nearest Neighbors on Activations is Practical
Inputs already tested represent N points in RD

Given a query point, find the distance dist to the closest of those N points
- Cosine or Euclidean distance

TensorFuzz considers an input “interesting” if dist > thresh

This technique is practical:

- Approximate nearest neighbor has preprocessing cost polynomial in N and D
and query costs polynomial in D and log(N).

- Real-world performance is even better when data has structure
- And we only need distance, not actual point, so can relax further.

Defining Errors: Property Based Testing
In PBT, assert a property of the function that should always hold.

PBT tool generates random examples trying to find violations.

- Best known example: Haskell’s QuickCheck

In TensorFuzz, the user specifies the properties to hold. Examples:

- No crashes
- No NaNs
- Same answer for mutated image if difference is small
- Same answer from quantized & non-quantized network
- Same answer from base and refactored network

Important Detail: Input Chooser
Choice isn’t just based on novelty - in practice, many inputs are novel.

Bias to recently added elements → depth-first search

- Will use mutations from a single seed until they stop being interesting

Otherwise, “breadth-first”: Explore all interesting examples equally

TensorFuzz has a hyperparameter that biases slightly to recently added elements.

TensorFuzz finds NaNs

NaNs cause trouble for everyone, but it’s hard to track them down.

We ‘fault-injected’ a bad loss function into a neural network and showed that
TensorFuzz could find NaNs substantially faster than a baseline random search.

TensorFuzz surfaces Quantization ‘Errors’

We often want to ‘quantize’ neural networks.

How do we test we’ve done this correctly? We could look at differences on test
set, but often few show up. Instead, fuzz for inputs that yield differences

TensorFuzz Facilitates Refactoring
functional_ops.map_fn(lambda x:
 array_ops.reverse(x, [flip_index]),
 image, dtype=image.dtype)

 45x speedup at 32x32

Inefficient flipping in tensorflow random flip.

A 6 line of code change sped up flipping by 2.6x to 45x.

Key technique during refactoring:
 Fuzz the difference between new code and old code.

flipped_input =
 array_ops.reverse(image,
 [flip_index + 1])

https://cs.corp.google.com/piper///depot/google3/third_party/tensorflow/python/ops/image_ops_impl.py?gs=kythe://google3?lang%3Dpytype?path%3Dthird_party/tensorflow/python/ops/image_ops_impl.py%23module._random_flip.flipped_input&gsn=flipped_input&ct=xref_usages&l=409
https://critique.corp.google.com/#review/213753728/depot/google3/third_party/tensorflow/python/ops/image_ops_impl.py&l=30L&vl=r75&vr=r76
https://critique.corp.google.com/#review/213753728/depot/google3/third_party/tensorflow/python/ops/image_ops_impl.py&l=30L&vl=r75&vr=r76
https://cs.corp.google.com/piper///depot/google3/third_party/tensorflow/python/ops/array_ops.py?ct=xref_jump_to_def&cl=GROK&l=44
https://cs.corp.google.com/piper///depot/google3/third_party/tensorflow/python/ops/image_ops_impl.py?gs=kythe://google3?lang%3Dpytype?path%3Dthird_party/tensorflow/python/ops/image_ops_impl.py%23module._random_flip.image&gsn=image&ct=xref_usages&l=409
https://critique.corp.google.com/#review/213753728/depot/google3/third_party/tensorflow/python/ops/image_ops_impl.py&l=303L&vl=r75&vr=r76

Tensorfuzz finds Bugs in open source models
Took popular open source GAN
implementation and added tests.

We knew that if learning rate too high,
loss would NaN.

✅ TensorFuzz found a NaN-producing input to this loss function in seconds.

Try TensorFuzz:

https://github.com/brain-research/tensorfuzz

Questions?

https://github.com/brain-research/tensorfuzz

